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Abstract. In a series of papers, Barnett, Pegg and various co-authors have proposed a description 
of quantum phase by means of a collection of s-dimensional stales and operators, s > 1. We 
analyse the limiting procedure they employ for large S, which is known not to be compadble 
with quantum mechanics in the usual sense. Further, we supply a rigorous demonswation of the 
asymptotic limits of the ‘mean* and ‘variance’ of their system of operators m coherent states. 
These values had previously been given but not justified mathematically, Our analysis, based 
on the asymptotic analysis of certain random variables, shows that the physical deductions that 
can be drawn from these limits are limited. 

We also prove that the (s + Ijdimensional ‘pure phase’ ~w-states they consider form 
a sequence of approximate eigenvectors for the Weyl-quantized angle operator A@) and the 
Toeplilz phase operator X proposed by Garrison and Wong, Popov and Yarunin, and others. 

These slates x@), to our knowledge first introduced by Lemer. Huang and Walters, can be 
used to construct a syslem of measurement as in the usual quantum theory. sensitive to certain 
qualities of phase, but not all. Indeed, a feature of ihe Bamen-Pegg method, when it gives 
finite answers, is the construction of associated measurement systems for different 0bseNables. 
We give eramples of sequences of (s + I)-dimensional devices which represent measurements 
significantly closer to ideal for X. This serves as a model for corresponding devices for A@), 
or indeed, any observable with a continuous spectrum, contingent on its spectral decomposition 
behg obtained explicitly. 

1. Introduction 

It is generally accepted that electromagnetic waves in an optical cavity can exist in states 
characterized as pure photon states, or very nearly so. To a good approximation this 
situation can be modelled as an assemblage of Boson oscillators, representing the discrete 
wavenumber modes of the field.  the^ pure photon states are then Hermite functions, the 
eigenstates of the number operators for the modes. 

In other circumstances, there are states of the field that seem to exhibit definite phase 
relations between the modes. A naive application of the principle of complementarity 
suggests that such states are eigenstates of an operator canonically conjugate to the number 
operator for each mode. That such a canonical phase operator d&s not exist in quantum 
mechanics is well known. Hence any scheme to describe these states of the electromagnetic 
field must do so through an observable which is in some sense a non-canonical phase 
operator, and various candidates for such an operator have been proposed. As a matter of 
terminology, we shall refer to the states in question as phase states, but we do not suppose 
them to be eigenstates of an observable, since we believe them to be associated with an 
observable having a continuous spectium. 
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6810 M A  Hennings et a1 

Barnett and Pegg and others have proposed a description of phase states through what 
is claimed to be a phase operator, and have investigated the consequences of this claim in 
a number of papers, of which [l-101 provides a representative sample. 

It will be argued in this paper that there are a number of important objections to their 
theory. In particular, their calculational procedures lead outside quantum theory. We do 
not accept that the phenomenon being described requires such a drastic revision of physics, 
particularly as there do exist candidates for a phase operator within quantum theory. For 
example there is the Toeplitz operator X of Garrison and Wong [I21 introduced as an 
operator on the Hardy space H 2  over the unit circle, also considered by Popov and Yarunin 
[13], and the operator A@) introduced by ourselves [14,15] and Royer [21] as the Weyl 
quantization of the angle function on phase space. For two recent review papers conceming 
the problem of phase, see Lynch [27] and Dubin er a1 [28]. 

In section 2 of this paper, we describe the formalism of Barnett and Pegg as we 
understand it, and offer some mathematical criticisms of their theory: their ‘phase states’ 
do not converge strongly in Hilbert space and their limiting procedure does not give well 
defined and finite expectations for all reasonable quantum mechanical observables. Nor- 
in the l i m i t d o  the ‘moments’ of their ‘phase operator’ with respect to the ‘phase state’ 
correspond to the moments with respect to a state of any Hilbert space operator. 

In section 2 we also contrast the distinct predictions for the mean and variance with 
respect to oscillator states of the Toeplitz phase operator X, the ‘phase operator’ of Bmett  
and Pegg, and the Weyl quantization of the phase angle, A@). 

In section 3 we discuss the variance of the ‘phase’ with respect to the coherent state cDa 
for these three theories, for large values of the parameter la[. The asymptotic dependence 
on 01 claimed by Barnett and Pegg [3] is verified rigorously. This verification entails 
considerable analysis, and we show that the simple arguments offered by Barnett and Pegg 
are mathematically insufficient. 

For large 1011, the variance of X in the state Oa is of the same order as for the Barnett 
and Pegg theory. In contrast, the vxiance of A(?) is of a different order. We suspect 
that measurements to date are of quantization of periodic functions of the phase. As the 
experiments involve only small values of la[ in addition, it seems premature to choose a 
theory on the basis of the experimental evidence to date. Analysis of the variance for A(?) 
will be found in the companion paper [lS]. 

After 
considering some problems inherent in any system of measurement we turn to what is our 
particular interest here: the measurement of bounded observables which have a continuous 
spectral component. After pointing out why measuring such an observable requires a 
measuring apparatus responding to a discrete spectrum only, we construct ‘ideal’ systems of 
measurement for such observables, based on their spectral decompositions. Such systems 
have optimal properties as regards both spectral response and output states. 

As a preparation for considering the formalism of Barnett and Pegg as a system of 
measurement for phase, we use our knowledge of spectral systems of measurement to 
construct systems of a loosely analogous type. These will give good spectral response, 
but, in contrast to the ‘ideal’ measurement systems, the output states are not constrained to 
approach the generalized eigenvectors of the observable to be measured. 

We then note additional conditions proposed by Barnett and Pegg to compensate for this 
lack of convergence, and set them in the measurement context. This allows their conditions 
to be examined in a full quantum mechanical setting. 

Other than ‘ideal‘ systems of measurements, in section 4 we consider systems determined 
by sequences of approximate eigenvectors, which are defined there. These systems have 

In section 4 we discuss the measurement process in quantum mechanics. 
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less desirabIe properties than the 'ideal' systems, but have their uses nonetheless. 
In particular, we show that the states x,J3) introduced by Lerner, Huang and Walters 

[l 11 constitute approximate eigenvectors for a number of operators of interest. In section 5 
we prove that they constitute such a sequence for the Toeplitz phase and shift operators, 
and in section 6 we do the same for the Weyl quantizations, A(?), of angle, and A(ei"p) 
of complex exponentials of angle. With this analysis in hand, we return to measurement 
theory in section 7, and show that much of the theory of Barnett and Pegg may be recast as 
a system of measurement for these operators based on the x@). From this point of view, 
the undesirable properties of the Barnett and Pegg variance and higher moments considered 
in section 2 are seen to be a feature of the measurement system. We also point out in 
section 7 that the characteristic 'ideal' system is available for X in more or less explicit 
form as a result of the work of Garrison and Wong [E]. 

As a bonus, the information we obtain about the spectrum of A(?) from our analyis 
enables us to say that its spectrum includes the interval [-n,n], and that its norm lies 
between x and 3?r/2. This reinforces our belief that the spectrum of A(?) is [-n, n], 
which we conjectured in [14] partly as a result of computer work reported there. 

2. Three theories of phase: oscillator states 

In order to make our objections definite, let us describe what we understand Barnett, Pegg 
and their collaborators to have done. For brevity, we shall refer to their theory as the BP 
theory. As usual in this subject, we shall restrict attention to one, degree of freedom, so that 
the system Hilbert space is L2(R). 

To begin with, we note that the mathematical analysis in this field often suffers from a 
lack of rigour. As an example, consider the 'vector' defined by the limit 

where, for each s > 0, x.,(e) is the normalized Hilbert space vector 

(2.lb) 

and (hn : n > 01 are the familiar Hermite functions, comprising an orthonormal basis for 
the system Hilbert space L2(R) of eigenvectors of the harmonic oscillator Hamiltonian. 

The x I ( B )  are the 'pure phase' states of Barnett and Pegg [3]. As far as we can ascertain, 
they were first introduced by Lerner, Huang and Walters [ I  I], who considered them in their 
analysis of their various shift operators. For this reason we shall refer to the a(€!) as LHW 
states. 

The limit (2.1~) is also referred to in the first edition (only) of the hook of Loudon [16], 
for example, where it is used to calculate a number of expectation values, and is supposed 
to determine a pure state of well defined phase. However, this limit does not define a state. 
To see this, we need only note that the sequence (x,@) : s > 01 of vectors converges 
weakly but not strongly to the zero vector. 

In more operational terms, each vector ~ ~ ( 0 )  defines a state on the algebra of observables 
by the rule 
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for every observable A. It is easy to show that the limit 

oe(A) = lim o,,s(A) (2.3) 

does not exist for all reasonable A .  For instance, taking the number operator N to be an 
observable [7], one has 

13m 

S 
o,.s(N) = 7 

so that the limit as s + 00 diverges. Thus, there is no such state as 00. 

This conclusion does not change if we form mixed states using the o,,~. To do this, 
multiply o,,~ with an amplitude function F(B), integrate over 8, and then take the limit of 
large s. 

Since at this stage we do not know which class of functions F should be used in order 
that a well defined state results, we must proceed formally. We define 

77 

W F ( A )  = lim 1 F(8)o,v~(A)d8 
r+m -n 

for all observables A, where kk is the kth Fourier coefficient of F. 
interpretation for states requires that they be normalized, and so 

The probability 

1 =OF({) = 2rr$O. 

Proceeding as before, we consider the observable N, obtaining 

We conclude that no such mixed state exists, no matter what choice is made for F. 
The BP theory is an attempt to refine the large s limit of the x,&’), but in doing so 

they are forced outside the realm of quantum mechanics, as they acknowledge. They end 
up not with vectors and operators on Hilbert space, but with collections of these: ‘The key 
feature in the development of the Hermitian optical phase operator was the abandonment 
of the conventional infinite Hilbert space for the description of the states of a single field 
mode. In its place, a state space (W) of formally finite dimensions is employed together 
with a prescription for taking the infinite dimensional limit only after c-number expectation 
values and moments have been calculated.’ [7]. 

Proceeding with our description of the BP theory, for any integer s > 0, attention is 
restricted to the (s+ 1)-dimensional subspace X,? of L2(R) spanned by the first s+ 1 Hermite 
functions. Defining the s + 1 equally spaced angles 

where 80 is some fixed angle, the set (X,,.(B,~,~) : 0 < j < sJ is an orthonormal basis for ‘Ids. 
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For given s, the vectors x & j )  and the numbers 8$,j are used to construct a finite-rank 
self-adjoint operator X ,  on L’(R) in standard fashion, by setting 

where the p,,j are the projections onto the xT(e,T,j): 

? v . j f  = ( x d & , j ) ,  f ) x S ( & , j ) .  (2.5b) 

The operator X, has been constructed in diagonal form, with 

&x$(Qv, j )  = @.s,jx.&?v,j)  0 < j < S. ( 2 5 )  

Thus, we can write down any function of X,? immediately. In particular, it generates the 
one-parameter unitary group 

(2.54 = e% p,, E R 
,=a 

and the spectrum of &lXr can be read o f f  as {e”@‘.i : 0 < j < s]. 
Moments of the operator X,? can be calculated in any given state. Now in quantum 

theory, one might attempt to take the limit of these moments as s tends to infinity, so as to 
seek to define 

BP,W) = s-m lim W, (x ,J+)  r E MU{OJ, @ E L’(R). (2.6) 

In particular, we would be interested in trying to define the quantities 

Ed@) = ,&(+. & @ )  = BP1 ($1 (2.7~) 

and 

VEP(‘&) s-m Jim [(@, (x.,)’@) - (@, X.Y@)’] = Bh(@)- Bpi(@)’. ’ W b )  

These latter quantities have been interpreted in BP theory as the mean and variance of their 
‘phase operator’ in the state $r. Indeed, BP theory would interpret EPr(@) as the rth moment 
of their ‘phase operator’ in the state +. However, we shall now show that this interpretation 
is not valid. 

For any function a E Lm(T) we can define a bounded operator T(a)  on the Hardy 
space Hz(T) by 

W ) f  = P*(af) f E H W )  (2 .8~)  

where P+ .is the orthogonal projection from Lz(T) onto H’(T) and af indicates the 
pointwise product of a and f. The norm of T(a)  satisfies the bound 

IIU4ll Q Ilallm. (2.8b) 
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The map T : Lm(T) --f .C[H*(T)] is linear and preserves adjoints in the sense that 

T(a)" = T O  a E L m ( q  (2.9) 

and we see that 

(f, T(a)g)  = - f0a(ei8)g(ei8)d0 a E Lm(T) f, g E H 2 ( T )  (2.10) 
2J-t -n 

but M is not an algebra homomorphism. However, 

= lluf 112 
> IIPt(af)l12 

= IIT(a)f 11' 

for all a E Lm(T) and f E H2(T). It follows that 

T(lal3 > T ( m - ( a )  (2.1 1) 

for all a E L"(T). 
With respect to the standard orthonormal basis (en : n > 01 of H 2 ( T ) ,  where 

c,(e'e) = $0 n A O  (2.12) 

we see that 

(e,,,, T(a)e,)  = CmFn a E Lm(T), m, n > 0 (2.13) 

proving that T(a)  is a Toeplirz operator. 
If we introduce the unitary map 0 from L2(R) onto Hz(T), given by 

Uh, = P e a  n 2 0 (2.14) 

we can combine U and T to construct a linear map ?(a) : Lm(T) + ,C[L2(R)] by 

?(a) = U")U a E L T r )  (2.15) 

with the properties 

I I ~ ( ~ ) I I  < IIaIIm (2.164 

?(U)' = (2.16b) 

(hm, ?(a)h,) = im-"6,-, (2.164 

where a E Lm(T) and m, n > 0; just as for T, ? is not an algebra homomorphism. 
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In particular, 

x = ?(e) (2.17) 

is the Toeplitz phase operator of Ganison and Wong 1121, Popov and Yarunin [13], and 
others. (Taking into account that in this and our previous work we have adopted a definition 
of angle complementary to that usually chosen, we must make minor modifications to the 
definitions of the Toeplitz phase operator and the states x.@) ordinarily used. This will 
become clearer in the course of this work.) We have introduced the coordinate function 0 
on the unit circle T, and will use 

@'(e'@) = e r  - n < e  ~ n ,  r e N  (2.18) 

for its powers. 
Here, as elsewhere, we shall work with the BP operators for which the fiducial angle 

00 has been chosen to be equal to -n. In this case, for any integers r, m, n > 0, direct 
calculation shows that 

for all s p max(m,n). Hence we can prove that 

lim (h,,,, (XJhJ = im+"',,,-n = (hm; ?(O')h,). (2.20) 

Since ( (X,J : s E N) is a uniformly bounded sequence of operators on L2(R), with 

l+do 

ll(X,Jll < n' for all s E N, we deduce that 

(2.21) 

weakly in .L[LZf$)] for any integer r > 0. However, the sequence does not converge 
strongly, as can be seen, for example, from  the fact that 

?(@) # f ( @ ) 2 .  (2.22) 

The first consequence of this calculation is that the quantities 

1 +Ir 

2n -n 
Bp,(*) = (*, ?(er)@) = - / S'((U@)(eis)lzdO r 2 0, E L ~ ( R )  (2.23) 

all exist, and so if @ is a unit vector in L2@), sP,(@) can be interpreted as the rth moment 
of a [-n, XI-valued random variable whose density function is 

-n<e<n .  (2.24) 

It follows that ESP(@) and V E ~ ( $ )  can be interpreted as the mean and variance of this 

1 
pp(e) = znt(w)(eV 

random variable. 
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Altematively, it can be seen that 

BP,(@) = (U@, Z‘W) r E NUKY 
where U@ E H2(T) c Lz(T) and Z is the bounded operator on L2(T)-and not @(T)- 
given by multiplication by the function 0: 

Zf = Of f E LQ). (2.26) 
But 2 does not preserve Hardy space H2(T),  which is the subspace of L2(“) which 

corresponds to the quantum mechanical Hilbert space L2(R). So while, for example, EBP(@) 
and VBP(@) are the mean and variance of the self-adjoint operator 2 on 12(T) in the state 
U@, in general there does not exkt a single bounded operator X, on L2(R) such that 

BPr(@) = (“7 Xk@) (2.27) 

0. In consequence, there does not seem to be any consistent 

An interesting relationship can be noted between the BP ‘moments’ and the Toeplitz 

for all $I E L2@) and all r 
quantum mechanical interpretation of the quantities BP,(@). 

phase operator X. Certainly 

ESP(@) =BPI(@) = ($, ?(a)$) = EXPIX; @1 
the expectation of X for any state $J E L2@).  We also have 

BPz(@) = (@. +(@’)@) > ($, p(0)z@) = (@, X z @ )  
so that we get the general bound 

VBP(@) = BPz($) -BPI($) > ($, Xz@) - (@, x @ ) 2  = Varix; 11.1 
for any @ E L2(mf). 

It is easy to derive the BP result 

(2.28) 

which has been interpreted as realizing a minimal uncertainty between the number and phase 
operators (which is suggested as an expected feature of a phase operator [61). This result 
should be contrasted with the corresponding result I201 for X: 

a2 1 
v a r [ ~ ;  /I,] = - - C - k2 n 2 o 

k=n+l 
(2.29) 

(note that var[X; h.] < V~p(h.) in accordance with our general bound), and with the result 

(2.30b) 

for the phase operator A@) obtained by quantizing the angle function (o on phase space, 
using the Wigner-Weyl correspondence [ 181. 

We believe that there is no reason to assume a priori that a phase operator ought to 
have the variance x 2 / 3  in the Hermite states. Alternatively, one might suggest that the 
deviations from n2/3 represents a quantum effect, which disappears as n tends to infinity. 
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3. Three theories of phase: coherent states 

By a coherent state with parameter a E '32 we mean the Hilbert space vector 

Note that the usual parametrization would be in terms of a = iiY/fi. For example, the 
expectation of the number operator N in the state 4, is )a)' = )011~/2. We have chosen 
this slightly different parameter for convenience, and to accommodate our choice of phase 
angle, which is complementary to that used by other authors. 

Coherent states have the property of being states of minimal uncertainly for position 
and momentum. As such, they are viewed as possessing essentially classical attributes. It 
is widely believed that the number and phase operators will be most nearly canonically 
conjugate in these states, increasingly so for large values of R = IaI. A heuristic argument 
can be given (see [IS] for example) that might lead one to expect that the variance of a 
phase operator in the state should exhibit behaviour like 1/(2Rz) as R tends to infinity. 

In 1181, the authors proved that 

IT1/z 
var[A(v); @ R I  = IIA(V)@R~~* - -jj- (3.1) 

as R~ tends to infinity, which is not of the form expected by the above reasoning. However, 
if the infinite series used to calculate the variance in [I81 were truncated, or if the phase 
space angle function were restricted to a region'which excluded the branch line (both of 
which processes seem to us to be unjustified), the expected 1/2RZ behaviour would result. 

It is claimed in 131 that B P z ( ~ R )  - 1/(2R2), and in [I11 that var[X; @RI is of order 
o(1) as R tends to infinity. Regarding this latter quantity, what we can say with certainty 
is that 

varrx; @ R I  = o[BPz(@pR)] R + 00. (3.2) 

However, to our knowledge, no explicit claim as to the exact asymptotic behaviour of X 
has been made, although computations do imply that var[X; (PR] - 1/2R2 [20]. 

Regarding the claim about the first quantity, it deserves fnrther investigation. Note that 
(equations (2.23) and (2.24)) 

'where 
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where X R  is the characteristic function (in the sense of probability theory) of an N U(0)- 
valued random variable YR with distribution 

In the calculation for BPZ(QR) in [3], and in analogous calculations for X in 1121, x ~ ( 8 )  
is replaced by the characteristic function of a normal distribution with the same mean and 
variance as those of YR. This approximation is said to be justified by the analogous procedure 
for the Poisson distribution. 

If this approximation is made, we obtain 

(u@R)(ei8) = ( 2 R ) ' / 2 n l / 4 ~ - ~ R 2 8 2 + ~ ' R 2 8  (3.54 

so that 

1 ((IQPn) (e") = 2Rx 1/ze-R'82. (3.56) 

Substituting this into the expression for B q  yields 

(3.5c) 

However, there are several objections to this line of argument. Firstly, no error analysis is 
presented concerning the effect of this approximation, which is only described as 'good', 
but no statement as to how good. Nor is there any indication that, whatever measnre 
of 'goodness' holds, it is maintained uniformly in 8, so that BPZ(@R) can be usefully 
approximated by this process. 

To illustrate these concems, let us consider the analogous problem of an N u(0)-valued 
, random variable Z R  which has a Poisson distribution, 

R2 R2" 
' P [ Z ~ = n l = e -  - n>O (3.6a) n! 

and characteristic function 

CO 

P R ( B )  = ' P ~ z R  = nleifl6 
n=O 

= exp[R2(ei8 - l)] 
= exp[-2R2sinz($8) +iRZsin8]. 

Calculating the expectation, we find 

= e ~ p [ R ~ ( e " ' ~  - 1) - iRB]. 
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Taking the limit in this expression as R tends to infinity, 

(3.7) 

uniformly for 0 lying in compact subsets of W. Thus, in the sense of convergence in 
distribution, 

ZR 2 R2 
R -+ N(0,l) as R 4 CO. (3.8) 

The notation N(m, U) indicates the normal distribution with mean m and variance U. 
It is tempting to believe that this result justifies the approximation (in distribution) 

ZR - N(R2 ,  R2)  (3.9) 

but care needs to be taken here. To see this, let CR be the characteristic function for the 
process N ( R 2 ,  R2), so that 

< ~ ( 0 )  = exp[-+R2B2 + iR20]. (3.10) 
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This would justify the substitution, since the term 1 / 4 d / ’ R 3  is the contribution from < R ,  
the error term eR contributing only effects of smaller order. 

However, this is not true, since 

= e-] (exp El - 4R’ sin’ (&)I - 1) 

This is the method that would have to be used to justify such a substitution in a general 
case, and it does not work here. But special circumstances prevail for this example, and it 
is possible to justify the substitution, which we show as follows. 

In this case, we know the exact form of ex@),  and by using Laplace’s method of 
asymptotic expansion we obtain 

and 

as R tends to infinity. 
Thus, in spite of being quite different, these two expressions have the same asymptotic 

form, which is essentially determined by the behaviour of E R ( @ )  and <R(B) at 6 = 0, at 
which point they happen to agree. 

Thus, the region around 0 = 0 is the only area of influence in these calculations, which 
shows that the branch line in the definition of the angle function is unimportant for these 
calculations. 

Having shown that replacing the Poisson distribution by a normal distribution does 
give the correct results in the above calculation, but that justifying the substitution is only 
possible because we can calculate all integrals directly, it is clear that, while repIacing the 
‘root Poisson’ random variable YR by a normal distribution may indeed give valid results 
(for certain asymptotic expressions), justifying the procedure may not be straightforward, 
since we cannot explicitly calculate the characteristic function x R ( e )  of YR. 

After this background, we shall now investigate the behaviour of 

B ~ ( @ R )  = - 6 ” I ( ~ @ R ) ( e ” ) ~ d @  (3.11) 
27r -x 

as R + 00. The method we use hinges upon turning the sum for Q R  into an integral. 
Given a series 
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which may be finite, one may consider an analytic function a(z), defined so that a(n) is 
just a,. Depending on the properties of a(z), it might be possible to choose a contour so 
that the integral 

is equal to the series via the residue theorem, together with other terms that can be managed. 
If so, an integral representation for the series may be obtained. 

By deforming the contour, various other useful representations might be possible, 
perhaps leading to asymptotic expressions. This technique is well known in Regge-pole 
theory, where it is used to derive the Sommerfeld-Watson formula. 

Of course great care has to be exercised in doing this. We begin with a finite sum and a 
correspondingly bounded contour: by C(n)  we mean the rectangular contour with vertices 

- 4 + i(n + f ). 1 n-  - i(n + ?) I n- 4 +i(n+ 1) - 1 - i(n+ i) 2 

Then 

(3.12) 

By considering the form of the integral along each of the four sides, we are able to take 
the limit as n -+ CO, and obtain an integral representation: 

By applying Stirling's formula to this representation, we find that 

as R -+ cu, uniformly for B E I-x, E]. 

of interest to us. As we do not know of any standard expression for 1/ r(z)1/2, we must 
It is from this integral representation that we shall extract the asymptotic expression 

proceed directly. To that end we consider the function 

iog[r(t + 111 t =- 0, R =. 0. (3.15) 

Then 

(3.16) 

where is the digamma function, the logarithmic derivative of the gamma function. 
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Let T = T(R) be the value o f t  where F' vanishes, F'(T) = 0; since 

> O  i f O < t < T  
< O  i f t > T  

F'(t)  is [ 
there is one and only one such point. Implicitly, 

(3 .17~)  

We can solve this for T to order O(R") by working from 

@(Rz+ ; ) = 2 1 0 g R f U ( R - ~ )  

from which we find, after applying the intermediate value theorem, that 

T(R) = f (RZ - 1) + U(R-'). (3.17b) 

In order to obtain uniform bounds, we are going to have to change variables in the 
integral, in a way which depends on F near T .  We define the constant ( F ( 0 )  = 0 and 
F ( T )  t 0) 

A = J F 7 T j  (3.18~) 

f" which we find that 

The change of variables we want is from t to w, where 

w = A + Sign(t - T)J-. 

Then 

integrating by parts, with 

gives 

(3.18b) 

(3.19~) 
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so that I 

as R + 00, uniformly in 8 E (-n, a). 
We can find 0 e q e 1 such that T(w) is well approximated in the interval [qA, 2A] 

by 

~ ( u J )  = t(A) + t'(A)(w -A) + it"(A)(w - A)z 

in the sense that there exists a constant K z 0 such that 

K 
R l?(w) - t(w)[ < -(I + I W  - AI) qA < w < 2A 

from which it follows that 

as R --t 00, uniformly in 8 E (-n, r). 
This last integral can be evaluated explicitly, giving 

as R -+ 00, uniformly in 8 E (-xi ic). 
The expression on the right can now be squared and integrated over 8: 
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Therefore, 

as R --f 00. This justifies the statements found in the literature concerning the asymptotic 
form of the BP ‘variance’ in the state @ R  for large R. 

Thus while it is certainly hue that as R tends to infinity we have 

(3.21a) 

(3.21b) 

= I f 2  
var[A(v); @ R I  - R (3.2 IC) 

and so the behaviour of A(q) is substantially different from that of X and the BP formulation, 
we note that it seems likely that the BP result comes from rktricting attention to a wedge 
around q = 0 in phase space, namely that region which is ‘furthest away’ from the cut in 
the plane. 

It has been noted elsewhere [14, 151 that the fact that N and A(9)  are not canonically 
conjugate, indeed, the fact that their  classical counterparts, the phase space functions 
f(r2 - 1) and 9 are not canonically conjugate with respect to the Poisson bracket, comes 
from the effect of the cut in the phase plane. Consequently, N and A@), correspondingly 
$(r2 - 1) and 9, are in some Sense canonically conjugate in the region of the plane near 
9 = 0, and so it is only to be expected that modifying the functions and operators to 
eliminate the influence of the region of the cut will result in 1/(2R2) for the asymptotic 
behaviour of the variance for any of the modified operators. However, we have seen [IS] 
that the large asymptotic behaviour of the variance of A(9)  in the state ( P R  comes precisely 
from the behaviour of 9 near the cut. 

Noting the identites 

O < j < s ,  s > n  (3.22) 

Barnett, Pegg and their collaborators argue that, together with the 1/(2R2) variance result, 
the collection of operators ( X J  represents an approximation to a probability distribution for 
the phase angle which is uniform on the interval [eo, 00 + Zn), and this, it is claimed, is 
supported by experiment. 

Regarding experiments, it is not clear to us, nor to the experimenters as far as we can 
tell, whether they are measuring a phase operator or some function of it. As far as we 
can tell, the experiments in question seem to megure observables representing quantized 
cosine and sine operators rather than the angle operator directly. Therefore, the experimental 
results should be compared with the variances of A(cos9) and A(sin9) in various states. If 
this is done, then the Weyl quantization produces the expected results 1181, and there is no 
longer any contradiction. Moreover, it is not clear that the experiments have been refined 
enough to distinguish between exact variances and their asymptotic limits. In addition, all 
currently available experimental data comes in the region R c 10, and nothing is known 

1 
i ( x , s ( e , ~ , j ) , ~ n ) ~ z  = s+l 
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for really large values of R .  We believe that direct comparison with experiment to select 
one phase operator proposal from the others is not yet possible. 

We must also say that it seems to us that these semiclassical heuristics may not do 
justice to the rich range of phenomena being considered. In particular, they may omit the 
possibility of new and interesting quantum effects, thereby reducing the predictive value of 
the theory. 

We have stated our objections to the procedures applied to the sequences [ x s ( e , , j ) ]  and 
(X,) in the BP theory: were they within the purview of quantum theory, they would obtain 
no more than the theory of the Toeplitz phase operator, which we feel to be of less obvious 
physic2 significance than the quantization of the angle function in any event. Hence, 
the manner in which they do proceed constitutes an ad hoc scheme which is supposed to 
generalize quantum theory. Yet the fact that it does not subsume quantum theory calls into 
question its acceptability as a correct physical theory. 

4. Measuring operators with a continuous spectrum 

In this section we shall formulate the phase theory of Barnett and Pegg within the usual 
framework of quantum theory. Bamett and Pegg themselves do not do so. Paraphrasing 
their reasons, as given,in the paper by Barnett and Dalton [7], they believe that phase is 
an attribute of a sort different from those ordinarily considered in quantum theory, and 
cannot be described by a single self-zdjoint operator .as can, say, position. They even 
state that ‘the nature of phase cannot be determined via experimental test!’ We feel that 
even if phase does require a number of observables to fully describe it, this is,in no way 
incompatible with quantum theory. A11 quantum theory demands is that we provide a means 
of measuring quantities we call observables. What seems to be the case is that a multiplicity 
of associated, but different, quantum qualities coalesce into a single classical property we 
call phase. It may even be more complicated than this, since relative and absolute phase 
may be considered as different in a certain sense. Whatever .the .results will turn out to 
be, as determined by experiments, we must emphasize that none of this requires modifying 
quantum theory. Nor, indeed, do we know of any experimental results that do. 

The theory proposed by Barnett and Pegg makes use of.the operators X,?. Whereas X ,  
is viewed as an operator on the space 7& spanned by the first s + 1 Hermite functions in 
BP theory, we shall consider every ,YV as an operator on L*(R). As such they are self- 
adjoint operators whose spectrum consists of non-degenerate eigenvalues, and so they are 
observable. It is precisely this consideration which will enable us to recast their work as part 
of quantum mechanics. There are some unusual features which result, and these require a 
pirticular treatment of quantum measurement theory. Our plan is to consider the necessary 
form of measurement theory as a general proposition in this section, and then to apply it to 
the BP theory in section 7, after we have obtained certain additional mathematical results in 
sections 5 and 6. 

We will assume the reader to be familiar with standard quantum measurement theory for 
self-adjoint and bounded operators whose spectrum consists wholly of ~eigenvalues. Very 
briefly, if A is such an observable, it can be written as 

A = C A j P j  
j>l  

(4.1) 

where ( A j ) i 2 1  are its eigenvalues and ( P j ) j > l  are the corresponding eigenprojections. A 
measurement of A can result in a registration o f  one of its eigenvalues only, and the value 
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Ai results in the collapse of the input state *in to the output state 

(4.2) 

In the special case where A j  is non-degenerate, the eigenspace is spanned by a normalized 
vector, say qj,  unique up to a phase factor. 

For definiteness, we shall consider this theory as realizing an arrangement where a 
beam is incident on a measuring device-we use the terms apparatus and instrument as 
synonymous with device. The beam is in the state @in, and the device is completely defined 
by an observable such as A. To distinguish this example from the others we need, we 
shall call operators such as A ideal observables and the instruments they represent as ideal 
instruments. 

All of the operators associated with phase that we have encountered are different in 
character from this, having a continuous component to their spectra. For definiteness, we 
shall consider the simplest such case, where A is a bounded self-adjoint operator whose 
spectrum is absolutely continuous and multiplicity free: the Toeplitz operator X i s  a good 
example. We shall write o(A) for the spectrum of A, which we assume to be equal to the 
real closed and bounded interval [Q. 61. 

No measuring device can be constructed which will precisely measure A. The two 
sources of error are (1) the continuity of the spectrum and (2) the absence of eigenvectors 
to use as output states. The consequence is that A must be measured by an ideal device 
which is as close to it as possible. Closeness must be defined here, and we take it to mean 
accuracy with respect to the two sources of error just noted. 

These two points form the basis of our understanding of the theory of Barnett and Pegg, 
and so it is essential to what follows to understand what they imply. Elaborating point 
(I), we observe that there is an ineradicable inaccuracy inherent in the response of any 
instrument: small though it may be, it is always present. The result is, as Kemble [25] states 
categorically in his 1937 text on Quantum Mshanics: ‘exact predictive measurements of 
continuous spectrum eigenvalues are fundamentally impossible. Experience shows that exact 
restrospective measurement of such eigenvalues are equally impossible . . . we assume that 
inexact measurements which conform (to the exact measurements possible for observabfes 
with Q discrete spectrum) to an arbitrarily high degree of approximation are to take their 
place.’ 

Let us quantify the inaccuracy of an instrument by a (strictly) positive number, call it 
the tolerance, measured in the same units as the observable we are using it to measure. 
The instrument cannot distinguish between spectral values which differ by less than the 
tolerance. Now were we measuring an observable with a discrete spectrum, this would 
not be an important concern, as we should only need an instrument whose tolerance was 
small compared to the distance between neighbouring eigenvalues. A registered spectral 
value would then be closest to one, and only one, eigenvalue, and the error in assigning the 
registration value to that eigenvalue would be insignificant. 

But no matter how small the tolerance, an observable with a continuous spectrum has a 
continuum of spectral values within the tolerance interval around any registration value, and 
so the device cannot distinguish between those values. (This is also true of limit points of 
discrete spectra, such as the ionization energy of a hydrogen atom; such points are treated 
in the same way as the continuous spectrum.) 

It follows that any instrument effectively partitions the continuous spectrum into intervals 
determined by the tolerance. The fact that all spectral points within such an interval are 
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indistinguishable by the instrument is physically equivalent to associating the insmment 
with an observable with a discrete spectrum: call it the instrument observable. Each 
eigenvalue of the instrument observable corresponds to that continuum of spectral points 
of the observable we wish to measure lying in the appropriate interval. This effective 
replacement of an observable with a continuous spectrum by one with a discrete spectrum 
is inescapable. 

Summing up, the existence of a non-zero tolerance in any measurement device means 
that it is represented by a device observable with a discrete spectrum. Hence, an operator 
with a continuous spectrum necessarily differs from any device observable, and it is actually 
the latter which is measured. It follows that we must have means of constructing instrument 
operators whose differences from the operators to be measured is small in some appropriate 
sense. 

Fortunately, this first source of error, spectral readings, can be dealt with in a satisfactory 
manner by using the construction of the Riemann integra1 as a model. By a partition ns of 
the spectrum of A we shall mean a finite ordered set 

The closed intervals 

so defined we call the partition intervals, and they are of length 

These lengths define the partition norm, as it is called in integration theory, 

(4 .34 

Along with the partition rrs we are free to choose a distinguished point A.?.j E IT. j  in 
each interval; this is analogous to choosing a value of the function to be integrated-in each 
interval and using it in the Riemann sum. These values, A.s,j, will be the eigenvalues of the 
ideal measurement device under construction. 

For each spectral value A of A, there is a nearest eigenvalue i.y.j to A (possibly there 
are two such), and the spectral value A will be registered as h,,j. This is an error, but is 
not greater than the corresponding length jA,,jI. If we supplement the partition z,~ with a 
corresponding set of output states-which we shall do below-we obtain an ideal device 
to measure A that we shall denote by A,y. From what we  have just said, it is obvious that 
whatever the spectral value that would have registered were perfect A-devices possible, the 
error obtained by using A,v will be no greater than Iln,J. 

We now see that it is appropriate to consider a sequence (A, j of devices, constructed 
through a sequence of partitions @cy) with partition norms converging to zero: 

(4.4) 

The physical significance of this is that if you require a device to measure A with a spectral 
accuracy no worse than some strictly positive tolerance E ,  you need only choose a large 
enough value of s, depending on E ,  and all the AI with t > s will have this property. For 
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this reason we refer to a sequence of partitions whose norms converge to 0 as satisfying 
the spectral accuracy condition. Note that we are free to choose the As,j as we will, just 
as in integration theory. Our conclusion is that the sensitivity to spectral readings for 
observables such as A can be dealt with by an effective approximation process. As a matter 
of terminology we refer to the sequence (A,?) of ideal observables as a measurement system, 
and will assume the spectral accuracy condition as a matter of course. 

The second source of inaccuracy in constructing devices to measure A is the choice of 
output states. For a system of measurement (A,J, this is equivalent to a choice of projection 
operators P,,j for each s, so that 

The only general condition required of these projections is that 

so that A,s is self-adjoint. Of course without further conditions, such a system is of only 
marginal interest, since there is only a very weak relation between the A, and A. Spectral 
accuracy is not a very strong recommendation for a measurement system. For example, 
the spectra of position and momentum are the same, and one would not think much of 
measuring the momentum of a particle by registering only its position. 

The sorts of conditions that will provide a more acceptable system are those that 
cause the A, to converge to A in some appropriate fashion. We take this to mean in 
the weak, strong or uniform operator topologies. However, weak convergence is hardly 
acceptable, owing to the fact that if we have sequences of bounded self-adjoint operators 
( K a ) ,  (Ln) converging weakly to K ,  L ,  respectively, then (K.L,)  need not converge even 
weakly: and if it does, its limit need not be K L .  This cannot happen for strong (hence 
uniform convergence a fortiori), and so without strong convergence we cannot make sense 
of variance and higher moment calculations. 

Our treatment of the theory of Barnett and Pegg is based on taking the LHVJ states x,,(6’) 
as output states for a system of measurement. The instrument observables then turn out 
to be the operators (Xs). It is the following property of these states that provides some 
justification for choosing them as output states. 

Proposition 4.1. For a bounded self-adjoint operator A on a Hilbert space X, a point A. is 
in its spectrum, u(A) ,  if and only if there is a sequence (@:I ) )  of normalized vectors in X 
such that 

Then (@,$’)),r>~ is said to be a sequence of approximating eigenvectors for A (SAE for short) 
P61. 

To make a connection with the more familiar notion of an eigenvector, note that if A 
should happen to be an eigenvalue of A and $ a corresponding eigenvector, the sequence 

An SAE is anything but unique. For one thing, there are many different SAE for a given 
spectral point A of A. For another, a given sequence of normalized vectors can be an SAE 

= @ is an SAE for the point A. 



Approm'mations to the quantum phase operator 6829 

for many different operators. In particular this is true for the LHW states: in sections 5 and 
6 we shall prove that they are SAE for many of the operators considered in phase theory. 
Granting this, we may expect that instrument systems based on them will not have good 
convergence properties, as a system can converge to at most one observable. 

An SAE is defined as a sequence of vectors associated with a single spectral point, and 
there need not be any connection between an SAE for one spectral value and an SAE for 
another. The LHW states xp(0), however, are related for different values 0 by virtue of the 
relation 

X , m  = e'BNx.do). (4.8) 

Examination of the consequences of this leads us to consider families of SAE related across 
the spectrum of a given operator in the following way. 

The spectral uniformity condition (4.2). 
and let 

Let A be a bounded normal operator on Lz(R), 

uo(A)=u(A)\ th i ,  ..., AN} (4.9) 

be the indicated subset of its spectrum; the points omitted are said to be exceptional. Given 
a family ( $ : A ) ) s , ~  of SAEs for A, define 

&,K = sup~ll(A - h)@,,?')II 

for any subset K~ of the spectrum u(A).  

(4.10) 
AEK 

We shall say that the family (@,p)),y,A satisfies the spectral uniformity condition if 

lim E,?,K = 0 (4.1 1) 
s-m 

for one of,the increasingly general options for the possible range of choices for the subset 
K :  

(i) K = u ( A ) ;  
(ii) K can be any compact subset of uo(A); 
(iii) K can be any compact subset of any open subset of uo(A) which is dense in u(A). 

Anticipating the results of the remaining sections, we shall see that option (i) will hold 
for Y and A(e'P); (ii) will hold for X ,  and (iii) will hold for A@). The exceptional points 
for X are fn, and for A(p) they are i x  and 0. The need to exclude f r r  for X and A@) 
is not at all surprising, nor is the fact that we do not need to make a similar exclusion for 
Y and A(e'9). The point is that the LHW states x,(@) are periodic functions of @;'and the 
spectrum of Y and A(e'q) is 1. In contrast, the spectrum of X is the interval [-r, x ] ,  whose 
endpoints correspond to one and the same point on %. Since there is a discontinuity in the 
spectrum which is not matched by a discontinuity in the output states, it  is not surprising 
that the mathematics requires us to avoid this part of the spectrum. This is another curious 
effect of the cut plane. 

We have conjectured that the spectrum of A(q) is the same as that of X. For this 
reason, the fact that we need to exclude the spectral points f r r  when considering A@) 
follows from the same arguments used above for X. The fact that we must also exclude 
the spectral point 0 in considering A ( q )  is curious, and we can find no reason for it. 
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We use these conditions as follows. Returning to our self-adjoint operator A with 
spectrum [a, b] ,  choose a family (rs) of partitions satisfying the spectral accuracy condition. 
Choose next a family of SAE satisfying the spectral uniformity condition. Here we have 
a choice of excluding exceptional points or not. If we include a point we should have 
excluded, the result will be that the instrument system we are constructing will work less 
well in the neighbourhood of the point. 

Now write 

I).,,,) 
?h , j  = *.l . 

If-and only if-the orthonormality conditions 

(4.12a) 

M Y . j ,  h) = 6j,k 0 < j ,  k < (4.12.b) 

hold, we may use the projections P y , j  defined by these vectors, 

P, , j f  = (@,T,j ,  f W . j  0 G j < s, s 2 0 (4.1 Zc) 

to define the A,y by the usual formula: 

Thus, if quantity to be measured ‘is’ within the interval I q , j ,  the value &,j  will be registered 
and the output state will be @,,.,j. We shall refer to the sequence (As) constructed in this 
way as an SAE system. 

In general, while appearing fairly restrictive, the condition of spectral uniformity is 
not strong enough for the resulting SAE system (A,v) to converge to A in any sense. It is 
clearly of interest to know whether there might he further conditions which do ‘guarantee 
convergence. The following conditions, while still not strong enough, are found in the BP 
theory and are felt by some workers to be motivated by physical considerations in some 
circumstances. 

The ascending subspace condition (4.3). Let (ks,j )~GjG,y:, , .~~ be a spectrally uniform family 
for A. Write 71,v for the (s + 1)-dimensional Hilbert space X S  spanned by the (q,y,,)~<jGs. 
The family is said to satisfy the ascending subspace condition if 7-1, is a subspace of 
for all s, and the inner product space spanned by the @,y,j for all j and s, E ,  is dense in 
L*(R). 

For the applications we have in mind, it would be a spurious generality to assume that 
71 was not dense. 

In this description, the vectors & j  are given and the subspaces E,y are formed from 
them. Alternatively, one might specify an ascending family of Hilbert subspaces and then 
seek a basis for each of them so as to constitute a spectrally uniform SAE family for 
A .  Clearly it might be difficult to find such vectors; it might even be impossible. The 
difficulty is increased if it is further required that the vectors sought have additional specified 
properties. We shall consider this again in section 7. 

We have found a condition which does ensure strong convergence for an SAE system. 
While theoretically interesting, it does not apply to any of the operators we are considering 
for the SAE system constructed from LHW states. 
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Proposition 4.4. Suppose there is given an.SAE system (A,T) for A,  where we may take K 
to be a ( A ) ,  and satisfying the ascending subspace condition. Then a sufficient condition 
that system (A,$) converges strongly to A is that 

lim (s + I ) ~ / * E , ~  = 0. (4.13) 
,s+m 

Proof. For any f E E there is a t for which f E Er. For any s > t we can write 

Then 

(4.15) 

Using the CauchySchwarz inequality, 

= (s + 1)]'2E.mIl. 

With the given condition on the (es), the result is seen to be true for any f E 'K. 

writing 
The family (IIAr[l),T is uniformly bounded. This most accessible way to see this is by 

A,? = L, j P T .  j 
j=O 

so that for any g E P ( W ) ,  

As the spectrum of A is [a, b] ,  

IIA,al12 6 (mawIlal, IblD2C l(@.y.j,g)lz 6 ( m x M ,  Ibll)211g112. 
j=O 

Thus 

SUP, IIA,JI 6 max{lal, lblh 
~~ 

Alternatively, as 'H is a nom determining subspace for bounded operators on L2(R), this 
result follows from the uniform boundedness theorem. It is a standard argument that under 

0 these circumstances, the convergence extends from E to L2@) and we omit it. 
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With a little more work of an essentially book-keeping nature, we could extend this to 
the more general choices for K, but as there still would be no applications to BP theory, we 
shall not do so. 

whose union is dense in L2(R), we can 
construct a measurement system which converges strongly to A, but not by using the notion 
of an SAE. The mathematical construction is quite simple. 

The restriction model (4.5). Let (IC,) be a family of Hilbert subspaces of Lz(R), nested in 
the sense that c KJ+l for all s, and such that their union is dense in L'(E4). Let Pb) 
be the associated family of projection operators. Define 

Given any ascending sequence of subspaces 

A(,?) = p(")AP(S) (4.16) 

As P" converges strongly-but not uniformly-to the identity, and as strong convergence 
is respected by products of bounded operators, 

lim A(.') = lim P")A lim P(.'l = A (strongly). (4.17) 
s+m r-.m s-CS 

Thus, the system (A(,')) constructed in this way converges strongly to A. 
In particular, were we to be given an SAE system (A,) for A, say with IC = u(A), 

and satisfying the ascending subspace condition, we could choose K., = ?-&, enabling us to 
compare the convergence properties of (A,r) and (A")). 

Naturally it is of interest to know whether or not a slightly weaker condition on the E~ 

would lead to weak convergence. The examples found in BP theory suggest that no such 
theorem exists, since each LHw-based SAE system may be associated with more than one 
operator. There is no conflict with our convergence theorem since we shall prove that the 
fall-off rates are not as fast as O ( S - ' / ~ ) .  The most we can say is that since the sequence 
(A,) is uniformly bounded, it has weak limit points. And since L2(R) is separable, any 
weak limit point is the limit of a subsequence, as opposed to a subnet. This seems to be as 
far as this line of analysis will go. 

The following construction shows that essential properties of an SAE system do not 
depend on the choice of the A,T,j. To make things general, we suppose that the spectral 
uniformity condition of type (iii) holds. Then let U be an open subset of q ( A )  which is 
dense in o(A) .  If K is any compact subset of U, we can find a compact subset L of U 
such that K is contained in the interior of L. For any A E a(A),  let J ( s ,  A) be such that 
&.J(,~,A> is the eigenvalue of A,v nearest to A. We can find an s ( K )  such that A s , ~ ( , T , ~ )  E L 
for all A E K and all s s ( K ) .  Since 

ll(A - ~)@.S,J(.WII G ll(A - A ~ , ~ ( . ~ , A ) ) ~ . S , J ( , ~ , A ) I I  + I I ~ ~ - A , ~ . J ~ . ~ , A ~ ~ ~ , ~ , J ~ , ~ , A ~ I I  

we deduce that 

llV - ~)@,~,J(.~.A)I I  G &(Ss L)  + l l~ ,~ l l  (4.18) 

for all A e K and s > s(K). We interpret this statement as extending the concept of spectral 
accuracy beyond the specified registration values A,.j to general speed values A E o(A). 

Our analysis has shown that SAE systems are of only limited value as measuring systems. 
We have constructed a strongly convergent system, the restriction model, without very much 
difficulty. To underpin our discussion we note that it is even possible to find a system (A,?) 
which converges uniformly to A,  provided we know the spectral decomposition of A. 
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Suppose we know the spectral decomposition of the observable The spectral model (4.6). 
we wish to measure 

(4.19) 

NOW simply choose the output eigenprojections to be 

Ps,j = P(x,s.j+l) - P(xt,j) = P ( l v , j )  

and define 

(4.20) 

"G = C".,jPT.j. 
j=O 

The fact that 

lim IIA - 2 , ~  < IIZ,II s+m 

hence that we have the uniform convergence limit 

lim IIA - &ll = o (4.2 1 b) 
.S+W 

(4.21~) 

is now a special case of a standard theorem in operator theory. 

In the next two sections we shall prove that the LHW states x,&') form an SAE for the 
various operators of interest. We shall do this in such a way that we can determine the E,?,K 

in the different cases. It will be seen that none falls off sufficiently rapidly to apply the 
above theorem, as we said. In section 7 we shall combine these results with the SAE system 
construction given here to analyse certain aspects of BP theory. 

5. The Toeplitz phase operator 

The operator obtained by Weyl quantization of the phase function, A@), Was constructed 
using a definition of the angle complementary to that generally found in the literature. 
For consistency with this convention we shall define the Toeplitz phase operator to be 
the bounded self-adjoint operator X = X' on L2(R) given by the rule obtained by linear 
continuous extension from 

where h, is the nth Hermite function. 
The Hermite matrix elements of X are obtained from those of A@) by replacing the 

factors g,." by unity [14,15]. It should be noted that our definition of X assumes values 
for the angle function lying in [-K, K), and in what follows we shall restrict our attention 
to values of 0 lying in that range unless otherwise noted. 
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The Toeplitz shift operators may be obtained from the operators A(e'?) and A(e-ip) = 
A($q)* by using the same conventions, i.e. taking the gm,n = 1 and the fixed angle 00 equal 
to --a, giving 

Yh, = ih,+l n E N U ( O ]  (5.W 

and 

-ihn-l if n E N  
if n = 0. 

Y*h, = 

For consistency, we must also redefine the LHW vectors by setting 

(5.2b) 

(5.3) 

The 'maximally random' property of the ~ ~ ( 0 )  with respect to the number operator is 
represented by the fact that 

1 
s + l  i ( x , m ,  h.)12 = - = 0 Q n Q s, 0 E R. (5.4) 

We begin our analysis proper by determining the relation between the ~ ~ ( 0 )  and the 
shift operators Y and Y'. (The shift operator Y differs from the customary unilateral shift 
operator by a factor of i.) 

The spectral decompositions of Y and Y' are well known. By mapping L2(R) onto the 
sequence space l z ,  they are favourite examples in operator theory [22]. For example, the 
spectrum of Y is the closed unit disc 6 in the complex plane and its eigenvalues are the 
points of the open disc. The boundary of the disc, the unit circle T, is then the continuous 
spectrum. What is of interest to us is the relation of the points of the unit circle with the 
vectors x.&3). 

Proposition 5.1. The set 

(XI(0) : s E NI 

of LHW states satisfies the s-equalities 

and 

(5.5b) 

Hence they constitute an approximating sequence of unit vectors for the spectral value eie 
of Y ,  and for the spectral value eci8 of Y". 

2 1  ~~ l l ( ~ *  - e-i@)x.v(e)ll = - 
s+l' 
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Proof. Using the definitions 

and so 

so that 
2 2  

~ ~ ( y - e ~ ~ ) x . ~ ( @ ) I l  = s+l. ~: 

Taking limits, we see that for any 0 E R, 

lim I ~ ( Y  - e'e)x.r(e)ii = 0. 
r-m 

Similarly, 

and so 
e-i(.v+l)E 

(y' - e-'e)xs(e) = q- mT hs 

so that 
2 1  IIV* -e-'e)x,T(e)~~ = =.. 

Taking limits, we see that for any 0 E W, 
lim I ~ ( Y *  - e-")x,.(e)ll = 0. 

S-m 

This, coupled with the fact that 

gives reasonable motivation for choosing xll(S) as an 'eigenstate' of Y (or Y') in 7& with 
'eigenvalue' e'# (or e-1e). Moreover, the same sort of results are true for the operator X 
,itself. 

We next consider the expectation of the Toeplitz phase operator X in the state x,&'). 
This will give us a bound enabling us to relate the ~ ~ ( 0 )  to the spectrum of X. 
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kmm 5.2. For 101 < n, we have the limit result 

Iim (x,de), xXs(e)) =e. 
S" 

(5.6) 

Proox If we expand ~ ~ ~ ( 0 )  in terms of Hermite functions, and then substitute the expression 
for the Hermite matrix elements of X we find 

This is essentially a one-variable sum, and introducing the new variable N = m -n enables 
us to reduce the expression to the form 

Replacing the sine by a difference of exponentials and recalling the function 0 E Lm(T) 
given by 

@(e) = e  - a < e < n  (5.7) 

and its Nth Fourier coefficient 6~~ we may revVrite our expression as 

for any s E N and 0 E R. 
Noting the sum 

it follows that 

(5.8) 

fors  E M and 101 < x .  The result now follows from standard Fourier series theory. 0 

We also require a useful expression for the quantity llXx,&3)1I2, the second moment of 
X with respect to the state x@). To obtain it we deduce the following expression for the 
cross terms, the Hermite matrix elements of X2. 

Lemma 5.3. The matrix elements of X2 with respect to the Hermite functions are given 
by 
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Proof. Using the definition of X in the case m # n we get 

in-m 

This expression simplifies to give the required result, while for n = m we have 

Changing variables from m to k = m - n and remembering that 

C:="z 
j21 J~ 6 

the result is evident. U 

With these preliminary calculations  done,^ we can prove one of the principal results 
of this paper, namely that the states ~ ~ ( 0 )  are approximate eigenvectors for X, and the 
spectrum of X includes the interval (-r, K). 

The proof of this result contains the germ of the methods needed for analogous proofs 
concerning the other operators we shall consider. First of all, we must know the answer; 
the proposition is verification, not discovery. We must then work with the various matrk 
elements so as to extract the limiting s behaviour. This requires doing estimates of the solt 
just above, as we do not have closed form expressions for the various quantities we need, 
and suspect that they may not exist, in any event. 

Proposition 5.4. For any lei < R ,  

Iim llxxs(e)112 = e 2 ~  
s-m 

so that for any 101 < R ,  

Dm Il(X - S ) X , ~ ( S ) [ ~  = 0. 
s-m 

(5.10a) 

(5.1 Ob) 

Thus 0 is a spectral value for X, and (x,&') : s E N] is an approximating sequence of unit 
vectors for any 101 < z. 

Proof: We begin the proof by expressing l[Xx,J3)[lz in terms of Hermite functions. This 
will involve the Hermite matrix elements of X2, for which we substitute the expression 
obtained in the lemma above, yielding 
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Writing out the sums in a less condensed form results in the unwieldy expression 

(-l)N COS NO s-N n+N 2 
+ Nk N = l  nl) k=n+l 

which we rearrange into the slightly more useful form 

COS NO 2 I k- I  s--n 

+ k=l  n=O N d - n  
--EEC N k  

for any 0 E R and s E N. 
We estimate the last three terms in turn. The first of these estimates is 

1 bo 1 +min(s,k- I) 1-c + k=l ~ k2 

l f l o g s  1 
s + l  s i- -. 4 

The next estimate is 

(-l)N cos NO 8 
N (s+ l)COS(~O)~ 

The third estimate bounds each of its three sums in turn: 

32 
4 

(s + 1)1/2cos(;o) 

for 101 < K. 
It is seen that all three terms will vanish in the limits + 00. Thus we deduce that 
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for le1 <IT. 
We recognize the sum as a partial sum of the Fourier series for the function 0'. Stkdard 

theory assures us of the pointwise convergence of these partial sums. Remembering that 
02(6') = e', we let s + CO, obta'ining 

as required. The remainder of the proposition is immediate. 

We have shown, therefore, that the states x.T(0) for 16'1 < n are of some importance 
for rhe Toeplitz phase operator X and to the shift operators Y and Y'. Their importance 
stems from the factthat they are sequences of approximate eigenvectors for these operators, 
and satisfy the maximal randomness criterion given above, equation (5.4), in addition. The 
arguments of section 4 now apply, leading us to consider the measurement systems (Xs), 
(Y,,) and (rr) for X, Y and Y', respectively. 

We believe that the operators X, Y and Y* are not as immediately physically relevant 
as the operator A@) and A(e*'q), since these latter are Weyl quantizations of phase space 
functions of the angle alone. It is the relation of the X , ~ ( O )  to these operators to which we 
now turn. 

6. The phase operators A(q), A(eiq) and A(e-'q) 

We now present similar considerations for the phase operator and the quantized exfionentials. 
we recall [15] that the phase operator is the bounded operator on L*(R) given by the formula 

where the g-factor, which distinguishes Afp) from the Toeplitz phase operator, is 

tmincm,n).rrm,n) 

tmr(m.n).s(m.n) 
gm,n = .m, n > 0. 

The quantities 5 are 

with 

if min(m, n) is odd 
s(m,n)  = I I '  if min(m,n) is even. 

(6.3b) 

The quantization of the phase space exponentials is given by the formulae 

A(eiq)hn = .\..+lh,+l n 2 0 (6.4~) 

and 

(6.4b) 
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The factors A, are given by 

where 

1 

S. = { 3 
i fn  is even 

1 if n is odd. 

(6.5~) 

(6.5b) 

The A, were obtained from the g,.,, and when g,,,'= 1 the operators A@) and A(e+) 
go over to Y and Y", respectively. 

As before, let us start with the operators A(ei9) and A(e-i9), for which the calculations 
are simpler. From the definition of A,, we can prove that there exists a strictly positive 
constant A such that 

(6.6) 

This enables us to prove the precise counterpart to the fact that do and e-@ are in the 
spectrum of the Toeplitz shift operators Y and Y*, respectively. The result is an illustration 
of the fact that the spectrum and an approximating sequence of unit vectors for each point 
of it is not sufficient to completely characterize an operator. In this it differs from a full 
spectral decomposition, which completely defines an operator. 

Proposition 6.1. For any e E R, the limits 

A 
\\A,\ - 11 < - n 

n E N. 

lhn l[(A(e-iv) -e-'' ) x m i i  = o (6.7) r+m 
lim ll(A(gv) - eio)xf(e)ll = 0 and 

S" 

hold, so that e" is an spectral value for A@), e-i' is an spectral value for A(e-iv), and 
[xs (B)  : s E N) is an approximating sequence of unit vectors in both cases. 

Proof. 

so that 

Taking the inner product of this with itself, we can apply the above bound on the A, to 
obtain the leading term for large s: 

1 < - [(l + A ) Z +  T A Z +  1 
1 ,z 

s + l  
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For the operator A(e-'+') we proceed as follows. 

so that 

Taking the inner product of this with itself, we now use the result for A(e'9) to get the 
estimate we need. 

Moving on to consider the phase operator A(q) ,  we need to obtain estimates on the 
behaviour of expressions analogous to those dealt with when studying the operator of Popov 
and Yarunin, but with extra terms coming from the presence of the g-factor. In the analysis 
below, we intend to show that for the quantities we are calculating, we may replace g by 
unity, so that the results for X apply, without affecting the end results. 

The factor g is quite subtle to work with, and it is useful to attack the problem by 
proceeding in stages. The first stage we have done: the operator X is   just the phase 
operator A(p) with the g-factor replaced by unity. 

mm(m. n )  + 1 

In the next stage we express the as 

m , n > O  

where 
(min(m, n) + 1 >...,+f 

max(m, n)  + 1 ym,n = 

+ (- , ) l+mi"I"i."l ~- - (min(m, n) + 1 )  
max(m, n)  + 1 

A precise expression for the C(m.n) may be obtained from the expression for gm,+. 
However, the only property of the C(m, n)  that we shall need to use is its boundedness: 
there exists a strictly positive constant C such that 

IC(m, n)l <.c ~ m. n > 6. 
Effectively, then, we replace A(q) by the simpler operator involving Y,,,n in place of gm,". 

In the final stage, we compare this simpler operator with X in the large s limit. 
The matrix (gm,,,) has an alternating pattern of increase and decrease, which stems 

from the quantities s(m, n). The result is the appearance of the minimum and maximum 
functions. The matrix (Ym,J has analogous properties. The precise property is the subject 
of ais next lemma. 
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Lemma 6.2. 
positive and monotonically decreasing. 

monotonically decreasing. 

ProoJ 

(i) If n is even, then the sequence whose Nth term is N-’(Y.,,,+N - 1) is 

(ii) If n is odd, then the sequence whose Nth term is N-l(l - Yn,a+N) is positive and 

For the first sequence, with n even, we observe that 

= (n + l)-i/4[(n + N + 1)1’4 + (n + 1)”4]-1[(n f N + 1)]/’+ (n + 1)1/2]-1 

and for the second sequence, with n odd, 

= ( n + N +  1)-1/4[(n+N+ I)’/‘+ (n+ 1)’/4]-1[(n+ N + I)’/’+ (n + 
and the assertions are now immediate. 0 

We can now establish the first result concerning A@) by using the method outlined 
above. 

Proposition 6.3. For all (e( < r,  the^ limit 

iim ( x m ,  ~ ( d x . d @ ) )  = e  
S - h X  

holds. 

Proof. From the definitions, 

(6.10) 

For comparison, we know that 

(6.11b) 

As mentioned above, it will be useful to use an intermediate stage behueen X and A@) 
through the quantities Ym,”. Hence we define 

Expressing gm,n in terms of Ym,n and using the boundedness o f  the C(m, n), we find 
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from which it follows that 

6843 

(6.12) 

as s tends to infinity. It now follows that 

lim [ (x@),  A((o)xM)) - Q W I  = 0. (6.13) 

This reduces the asymptotic form of the first moment of A@) in the state ,ys(@) (the 
expectation) to the limit of the Y,," problem. We obtain this limit by doing the s u m  over 
N first, and comparing the result with the properties of the operator X: 

s-tm 

for any s E N and 101 < H .  Thus 

as s tends to infinity, I @ ]  c n, so we have 

for any 181 4 n. 
Thus. 

(6.14) 

(6.15) 

(6.16) 

and the results of the previous section tell us that 

as required. 0 

As an aid to the next stage, of the calculation of the asymptotic form of the second 
moment of A@), we note the fallowing intermediate result. 
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Lemma 6.4. Let le1 c z. Then 

i i  [II(A(V) - x ) x m i i 2  - ii(m - e ) ~ , ( s ) i ! ~ i  = o (6.17) 
1-00 

and so we can say that 

lim II(A(v) - e)x&3)(12 = 0 if and only if lim I\(A(p) - X)xs(e)l12 = 0. (6.18) 
s-m s-m 

Proof. Consider 

Il(A(p) - x)x.Ae)l12 = II(A@) - e)x,r(e) - (X -e)x,&J)ll2 

= ii(A(v) - e)x.de)ii2 + I I ( X  -e)x,(e)ii2 
- 2Re((A(v) - e)xs(e), ( x  -e)xs(e)). 

Using the Schwarz inequality for the last term, 

IRe((A(v0) - e ) x m .  (x -e)x,(e))i G I I ( A ( ~ O )  -e)xs(e)iiii(x - ~ ) X . ~ ( ~ ) I I  

G (+ + isi)ii(x - e)xs(s)ii 

for any s E N and 0 E W. Thus 

Ill(A(c0) - X)x,(e)l12 - Il(A(c0) - e)x.@)l121 
< ( ~ ~ + i e i ) i i ( x - e ) x , ( e ) i ~  + I I ( X - ~ ) ~ , ~ ( ~ ) I I ~ .  

From our previous work on the spectrum of the Toeplitz phase operator, we know that 
II(X-Q)x,v(0)1[2 converges to zero as s tends to infinity if 101 c x .  The result is now 
immediate. 0 

In this way we are led to study the second moment of the difference operator A@) -X, 

This second moment involves two factors of g: 
which is in accordance with the general scheme of analysis we have been pursuing. 

Remembering that substituting Ym,n for gm," was useful in considering one g-factor, we 
suppose that it will prove equally useful for two. The two-factor analogue of a(s) is the 
function 

Following the pattern employed before, we take the difference between the g,,,." and 
Ym,n expressions: 
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Applying the bound, we obtain 

max(k, m) + I max(k, n )  + 1 
min(k, m) + I min(k, n)  + 1 

for all k, m, n >, 0. There now follows a long calculation which reduces part of the problem 
to the convergence of ~ . v ( @ )  as s tends to infinity. In order to reduce the length of the proof, 
we shall consider only one part of it in any detail, as being characteristic of the rest, which 
we shall only indicate. 

Prupusitiun 6.5. For all 101 e IT, the limit 

lim Il(A(9) - X)X.&')ll = 0 holds if and only if lim p,&?) = 0. 
s-m r-m 

Proof: The first of the sums we must consider is 

(6.20) 

This is a type of expression we have encountered before, and we deduce that 

as s tends to infinity, and so 



6846 M A  Hennings et a1 

The second bound is obtained in the same way, and we find 

In the usual way. 

as s tends to infinity, and so 

The next bound is 

as s tends to infinity, and so 

For the final sum, we note without proof that 

( k + n  + N + 
k>I k ( k + N )  

(n + N + l)l/' 
Nl/2 ' 

, < 5  

If we substitute this into the estimate for the final sum we find that 

C(C + 4) 
<,IO + 1)3/4 [ 0 1  c &][ N=l 9 $1. 

Thus 

for large s, so 

Putting these estimates together, 

lim [II(A(V) - x)x,mi2 - ,%(e)l= o r-m 

for all 16'1 c IT, from which the prpposition.is immediate. 
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To study the behaviour of j?x(0) as s tends to infinity, we must split the expression for 
j?,@) into four parts. The resulting limit will be~seen to depend on the large s limit of the 
function 

The relation between W ( 8 )  and ~ ~ ( 0 )  is 

Recalling that the sequence ((-T)"N-'[Y,,,+N - I]) i s  positive and monotonic 
decreasing for any n 2 0, we can establish the next result. 

Proposition 6.6. For all l 8 l ~ <  H ,  the limit 

lim ,f7s(6') = 0 if and only if lim n ( 0 )  = 0. (6.21) 
s-bm r-bm 

Proof. 

k#n 

from which we deduce that 

as s tends to infinity, and so 
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Similarly, 

l-xzzk-n-hl + N=l n=l p=O k - n  I (s + l)cos(fO) k + 1 
and so is of the same order as the previous expression and, hence, converges to zero as s 
tends to infinity. 

s-2 1 - 8 s-1 r-N n-I 
Yk*n+N - Y k . " - 1 ( - I ) N  cos(N@) < 

The last expression is of different order: 

and so converges to zero as s tends to infinity, from which the proposition now follows. 0 

Putting everything together, we have reduced the asymptotic behaviour of A($?) to that 
of K m :  

Corollary 6.7. For any IS1 c z, 

lim [[(A@) - O)&(O)ll = 0 if and only if !;h&ys(0) = 0. (6.22) 

Up until now we have made substantial use of the fact that if ( A N )  is a monotonic 

r-cu 

decreasing sequence of positive terms, and if IS1 c n, then 

I COS(4B) 2AK 

M 

(-l)NA,v cos(NB) 4 - I N=K 

for any K c M .  However, in those cases where we consider the function y,(B), it turns out 
that we must consider a sequence ( A N )  which is not monotonic decreasing. Instead-and 
this case will occur here because of the interlacing property of the g-factordhe even and 
odd subsequences ( A ~ N )  and ( A ~ N + , )  are monotonic. The first is positive and decreasing, 
the second negative and increasing. In the next-and last-calculation, we take advantage 
of this by utilizing the following lemma, which we present without proof. 

Lemma 6.8. If ( A ~ N ) N > I  and ( A ~ N + I ) N > o  are each positive monotonic decreasing 
sequences, then 

M 
(6.23) 

for any M E M  and 0 < 101 c I?. 

Finally, the culmination of our previous work identifies part of the spectrum of the 
phase operator A($?) and the states ,&(e) as approximate eigenvectors. 

Theorem 6.9. For any 0 c 101 c n, the limit 

lim Il(A(lo) - S)x.M)ll = 0 .x-+m (6.7.4) 

holds. Thus 0 is a spectral value for A(p) and ( ~ ~ ~ ( 0 )  : s E Fa] is an approximating sequence 
of unit vectors. 
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Proof. Writing x&3) in terms of the Y,,,x, and reordering the sums, we find 

Applying the previous lemma, 

iYk+n+Z,n+Z - ii - 11 ~~ 

k + 2  
+ 

k~ 

With estimates based on the Ym,,, of the sort obtained previously, we find that 

which gives us the asymptotic behaviour 

(6.25) 

(6.26) 

from which the result follows. 0 

Taking stock, we have shown that the spectrum of A@) satisfies 

spec[A(v)l 2 (-n, 0) U@. n) (6.27) 

and so contains the interval [-a, n]. We cannot conclude that this is the entire spectrum 
of A(p), since we have only been able to prove that 

(6.28) 

a result obtained in [IS] by considering coherent states. Were we able to prove that the 
norm~of A(p) is-equal to x ,  which we conjectured previously, this would complete the 
determination of the spectral values of A@). Unfortunately, we have as yet made no 
progress in this direction. 

It is rather intriguing, not to say irritating, that the value 0 = 0 is not dealt with by 
the above theory. Of course, we have been forced. to make a number of approximations to 
obtain the above results, and it,might have been the case that these approximations were too 
simplistic to deal with the value 0 = 0. This is not the case, however, since we certainly 
know that 

lim IIA(rp)xS(O)II = 0 if and only if lim y,(O) = 0. 
S+M .f+M 

(6.29) 
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But does n(0) converge to zero as s + co? 
To answer this we observe that 

M ’ 4(k + M + 1)3/4 

for any k ,  M E N, while 

1 1 1 m 

k=I ( k  + M + 1)5/4 (k + M + l)V4 + (M + l ) I I 4  (k + M + 1 ) W  + (M + 1)W 

1 ’ 4(M f2) 

for any m E N. 
With these bounds in hand, we calculate that 

for all s E M, so that y,(O) certainly does not converge to zero as s + W. We conclude 
that: 

Proposition 6.10. The sequence ( ~ ~ A ( f p ) ~ , ~ ( 0 ) ~ ~ )  does not tend to 0 as s + 00, and so 
[ a ( O ) ]  is not an approximating sequence of unit vectors for the spectral value 0 = 0 of 
N9) .  

7. Discussion 

We now wish to resume our discussion of the theory of Barnett and Pegg from the point 
of view of the measurement systems of the SAE type we discussed in section 4. The new 
material for the discussion is the results of our asymptotic analysis in the previous two 
sections, namely 
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for the exponential operators, where C is a strictly positive constant. For the Toeplitz phase 
operator we have 

The Weyl quantization phase operator is-estimated in terms of the Toeplitz phase operator 

(7.30) 
by 

Il[A(V) - elx.~(e)II < Il(X - @)xd0)ll+ Il(A(9) - x)x.c(Qll 
together with 

(7.3b) 

The points B = z b r  are omitted for X and A(9)  and, in addition, the point 0 = 0 is omitted 
from the A@) estimate. n e s e  are the exceptional points in the sense discussed in section 4. 

Exceptional spectral values aside, this shows that the sequence [ ~ , ~ ( 0 )  : s > 0) of LHW 
states is an S A E  for each of the above operators. For the exponential operators we have a 
globally spectrally uniform family, since we can take 

(7.44 

For the phase operators we have local uniformity. For the Toeplitz operator X, let k be 
any compact subset of (-n, K). From the above estimate we see that we may choose; 

where 

For the operator A@), let K be any compact subset of ( - x . x )  not meeting the point 
0 = 0. Then we may choose 

(7.64 
where CK is a suitable positive constant which could be made definite by chasing carefully 
through the bounds, and where 

(7.6b) 

We have chosen not to simplify these choices for two reasons. The first is that we do not 
calculate with them, and so their complexity does not matter, and second, in the form given 
it is easy to determine where each'term comes from, by consulting sections 5 and 6. 

The BP theory is based in large part on these LHW states, and we now recognize them to 
provide a uniform spectral SAE family for these operators, global or local as the case may 
be. But they have other properties which are of interest, namely: 
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The B P  subspace conditions (7.1). 
(a) The family ( x S j )  is an orthonormal basis for the (s + 1)-dimensional Hilbert space 

X,r spanned by the first s + 1 Hermite functions, and the collection (X,r)s satisfies the 
ascending subspace condition. 

(b) The ( x ~ , ~ )  are uniformly distributed over the eigenvalues of the number operator. 

Let us now examine the implications of using the LHW family to construct an SAE system 
for Y and Y". In principle, of course, we should consider C and S and not Y and Y', but 
results for the latter pair transfer to the former pair easily enough. With this latitude, we 
consider the family 

(7.7) 

where k',.j projects onto the subspace spanned by x S . j .  As with all SAE systems, we have 
spectral accuracy. 

Let us consider whether or not r, converges to Y ,  and if so, in what sense; and similarly 
for Y; and Y*. 

Proposition 7.2. The family (Ys) converges strongly, but not uniformly to Y. The adjoint 
family (Y:) converges weakly, but not strongly, to Y. 

Proof. A simple calculation shows that 

Yh,  if n < s - 1 
i-.Sei(.T+f)&ho if = 

0 if n > s. 

Then if f belongs to the subspace 'H spanned by the Hermite functions, we have 

(7.8) 

Yvf =Yf f € X  (7.9) 

for s large enough. 

note that 
There are several ways to extend this result to all of L2(R). The most elementary is to 

Hence the norms of the r, are uniformly bounded by 1. Now if g is any vector in L*@) 
and E is any strictly positive number, we may choose an f E 'H such that Ilf - gll is less 
than (IlYll+ 1)-]&/2. Then fors  large enough so that II(Y - Y,.)fll c &/2 we have 

Il(Y - Y M l  < Il(Y - Y M +  IIY - YVIlllS - fll 
< IlW - Y J f l l  + (IlYll + IlrPll)llg - fll 
< Il(Y - Ydfll + (IlYll + l)llg- fll 
< E .  
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Thus Y, converges strongly to Y .  
Taking the adjoint of r, we find that 

if n =.O 
i f l < n < s  
if n > s. 

Then 

Thus, i f f  E 71, 

fobs s -i(s+I)& (Y,' - Y ) f  = i e 

for large enough s. Taking norms, 

IKY: - Ufll = If01 

which does not converge to 0 as s + CO. For weak convergence we calculate 

I ( g , ( Y : - Y ) f ) l = l f o L l  

which does converge to 0 for all g E LZ(R). This completes the proof. 0 

Thus the system (Yy) is (just) reasonable as a measurement system for Y ,  but its adjoint , 
is not a reasonable way to measure Y*. We can deduce from this that we have no better than 
weak convergence for the Hermitian components (C.7) and (&) as measurement systems 
for C and S, respectively. For the operators A(e*ip) there is necessarily no convergence at 
all, and so this is a very poor system for those measurements. The strong convergence of 
the Ys to Y is the best convergence result we have found for SAE systems constructed from 
LHW states. 

If the reader is surprised that the systems (ry) and (Y;) behavedifferently as regards 
convergence, it should be remembered that the adjoint is not continuous in the strong 
operator topology. 

More than for the exponential or trigonometric operators, the BP theory is meant to 
provide a substitute for a phase operator. For us, that means considering the system (X,) 
as measuring X or A@). We now know that this is a locally, but not globally, uniform 
SAE system for these operators. We know its convergence properties from section 2, which 
we may summarize as follows: 

Proposition 7.3. The sequence ( X , )  converges weakly, but not strongly, to X. The power 
sequences ( X ; )  converge weakly, but not strongly, to operators ?(on). 
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This result is the reason that in using the BP theory, the limits + 00 must be taken 
after all the matrix elements have been calculated. For if the BP theory were using a system 
that converged strongly, the limiting results would be just the same as calculations using 
the limit operator. The fact that a phase operator is replaced by a multiplicity of operators 
is known to those that use BP theory. Here we see what some of that multiplicity is. Each 
power sequence determines a new operator on Lz(R). The SAE system determined by ( X ; )  
does not converge to X n ,  which further indicates the poor response of this system. This 
is also the case for many functions F-but not all-in considering ( F ( X , < ) )  for measuring 
F W .  

Something which seems to have been overlooked is that as the ?(On) are themselves 
observables, they have a distribution in every state, and one should consider the 
interpretation of the powers (f(@n)m),20 for each n.  

Further insight into the meaning of the BP theory comes from considering how close 
to being unique the LHW states are. If we demand the BP subspace conditions for some 
unknown family ( @ $ , j ) ,  we have the ansatz 

from (a). From (b) it follows that 

[a(n; s, j)l = In(m; s. j ) [  = (s + I)-'" o < n ,  m < s 
the last equality following from normalization. The result may be written as 

(7.10) 

where the u(n; s, j )  are of unit modulus. The only latitude in satisfying these conditions, 
then, is the appearance of phase factors as indicated. The SAE systems determined by such 
( h . j )  will have the essentially same properties as the system obtained from the LHW states, 
certainly as regards convergence. 

In examining this problem, we considered the possibility of keeping only the ascending 
subspace part of the BP subspace condition, and replacing the uniform distribution condition 
by a least-squares condition. Doing this for the operator Y, this means that we must find the 
normalized vectors @&3) which minimize the quantity [[(Y - de)fl[ over all (normalized) 
states f E Y. 

The solution to the minimum problem is obtained by noting that 

and that this minimum value is achieved for 

Then 

(7.11a) 

(7.116) 
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However, the @$., are not mutually orthogonal for fixed s as j varies, so this is not an 
acceptable SAE family. 

This shows the stringency of the BP subspace conditions. As they were proposed in that 
theory as realizing crucial features'of phase, any critique of the BP theory must consider 
the legitimacy of requiring these conditions. Given an 'operator A to be measured, as in 
section 4, a measurement system based ,on its spectral decomposition was construct$, which 
converged uniformly to A.  After the construction, not before, one can determine what sort 
of subspaces are associated with the index s, and how they relate to other operators. From 
the no-go theorem, one would not expect a phase operator to be uniformly distributed over 
the number operator eigenstates. In fact, it is part of the useful results obtained from such 
a model to determine this distribution. Our judgment is that it is the deviation from the BP 
subspace conditions that give quantum phase theory its non-classical character. 

One of the lessons this study teaches is not to confuse a measurement system with the 
observable to be measured in the non-ideal case. Even in the case of a system based on the 
spectral decomposition of A ,  there are infinitely many such systems obtained by rounding 
off the staircase function in various ways. Moreover, spectral accuracy by itself is certainly 
not a sufficient characterization of A.  

In conclusion, we have argued in this paper that the only way that phase operators, 
which have continuous spectra, can be measured is by apparatus observables with discrete 
spectra. In particular, we have recast certain aspects of the BP theory into this framework, 
through the interpretation of the operators X, as apparatus observables. In this setting, 
many of the BP calculations are perfectly understandable within standard quantum theory. 
The fact that the X,v do not converge strongly to the Toeplitz phase operator X accounts for 
certain other results which seem difficult to understand when not viewed in this way. 

The essential distinction between different measuring systems arises from the different 
choices of output eigenvectors. We constructed models different from that obtained from 
the BP theory. Utilizing the spectral representation of the phase operator, we could 
construct systems of measurement which seem natural and give significantly more quantum 
information than does the BP system. Evidently, the experimental distinctions between 
different candidates for a phase operator are not a simple matter. They are further 
complicated by the fact that measuring, say A(e") is not at all the same thing as measuring 
A@), or even eiA(q). These problems provide a nice challenge. 
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